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Abstract 

Cell-based High-Content Screening (HCS) using automated microscopy is an upcoming 
methodology for the investigation of cellular processes and their alteration by multiple chemical or 
genetic perturbations. The analysis of the large amount of data generated in HCS experiments 
represents a significant challenge and is currently a bottleneck in many screening projects. This 
article reviews the different ways to analyse large sets of HCS data, including the questions that can 
be asked and the challenges in interpreting the measurements. The main data mining approaches 
used in HCS, such as image descriptors computations and classification algorithms, are outlined. 
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Introduction 
Fluorescent microscopy has enabled 

multifaceted insights into the detail and complexity of 
cellular structures and their functions for well over 
two decades. As an essential prerequisite for a 
systematic phenotypical analysis of gene functions in 
cells at a genome-wide scale, the throughput of 
microscopy had to be improved through automation. 
HCS is defined as multiplexed functional screening 
based on imaging multiple targets in the physiologic 
context of intact cells by extraction of multicolour 
fluorescence information. Simultaneous staining in 3 
or 4 colors allows the extraction of various parameters 
from each cell quantitatively as well as qualitatively 
such as intensity, size, distance or distribution (spatial 
resolution). The parameters might be referenced to 
each other, for example the use of nuclei staining to 
normalize other signals against cell number, or 
particular parameters might verify or exclude each 
other.  

An essential factor in the success of high content 
screening projects is the existence of algorithms and 

software that can reliably and automatically extract 
information from the masses of captured images. 
Typically, nuclei are identified and masked first. 
Then, areas around the nuclei are determined or the 
cell boundaries are searched to mask the cell shape. 
For popular HCS assays at the sub-cellular level such 
as cell cycle analysis (mitotic index), cytotoxicity, 
apoptosis, micronuclei detection, receptor 
internalization, protein translocation (membrane to 
cytosol, cytosol to nucleus, and vice versa), 
co-localisation, cytoskeletal arrangements, or 
morphological analysis at the cellular level such as 
neurite outgrowth, cell spreading, cell motility, colony 
formation, or tube formation, ready-to-use scripts are 
available and need only some fine-adjustment for the 
particular cell line and/or conditions of the assay. 
Presently available analysis methodologies for 
large-scale RNAi (siRNA) data sets typically rely on 
ranking data and are based on single image descriptor 
(feature) or significance value 1, 2, 3. However, 
identifying patterns of image descriptors and 
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grouping genes into classes based on multiparamteric 
analysis might provide much greater insight into their 
biological function and relevance (FIG 1). When 
determining whether a particular siRNAs is similar to 
control, there are four characteristics that need to be 
considered multiparametric analysis: absolute image 
descriptor value, or whether the siRNA signal (one 
descriptor) is at a high or low level; subtractive degree 
of change between groups, or the difference in 
descriptor across samples (calculated using 
subtraction); fold change between groups, or the ratio 
of descriptor across all samples (calculated by 
division); and reproducibility of the measurement, or 
whether samples with similar characteristics have 
similar amounts of the gene transcript. Classification 
techniques for comparing two sets of screening 
measurements essentially evaluate these four 
characteristics for each siRNA in various ways to rank 
siRNA that are most similar to controls.  

Many free and commercial software packages 
(Table 1) are now available to analyse HCS data sets 
using classifiers, although it is still difficult to find a 
single off-the-shelf software package that answers all 

questions related to RNAi silencing. As the field is still 
young, when developing a bioinformatics analysis 
pipeline, it is more important to have a good 
understanding of both the biology involved and the 
analytical techniques rather than having the right 
software. This article reviews the different machine 
learning methods to analyse HCS data.  

Dimension Reduction and Image 
Descriptors Selection 

Mathematically, a HCS experiment with n 
(siRNA oligonucleotides) and represented by m (m 
>3) image descriptors is an n· m dimensional matrix. 
There is no way to graph the matrix, although one 
would like to review the diversity graphically. In 
order to solve this problem, dimensionality needs to 
be reduced to two or three. Dimensionality reduction 
should be a first preprocessing step in 
multiparametric data analysis. Many dimension 
reduction approaches are available. We will 
summarize some of the widely accepted dimension 
reduction technologies. 

 

 
Figure 1. The key steps necessary for conducting a data flow of high-content image based screening. This HCS informatics pipeline consists of instrument 
management (logistic – booking systems), data acquisition using automated microscopy, automated image processing, normalization together with quality 
control, data storage using relational databases, archiving on tape storage system, data analysis including data modeling and visualization for hit definition and 
as last step bioinformatics. Highlighted parts in red color in this figure are our focus of discussion in this paper. 
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Table 1. Some freely and commercial available software for HCS analysis. Although many bioinformatics companies sell software that 
assists in HCS analysis, there are several freely available software packages that can be used to perform the six analytical techniques 
described in this article. 

Name Description Source 
CellMine 
Commercial 

Integrates screening data with images and facilitates linkage to complementary 
discovery data and compound information. It unlocks the value of cell-based assays 
by facilitating improved lead selection and optimization.  

http://www.bioimagene.com  

AcuityXpress 
Commercial 

Integration of image acquisition, image analysis and informatics. As a result, 
cell-by-cell multi-parametric results are automatically linked with the images and 
analysis results. 

http://www.moleculardevices.co
m/pages/software/acuityxpress.h
tml 

Genedata 
Commercial 

Supports quality control and analysis of interactively managed early-stage and large 
volume screening datasets. 

http://www.genedata.com 

LabView  
Commercial 

Graphical data mining software. 
Open Source and arbitrarily customizable. 
Data aggregation, filtering, missing values 

www.ni.com/labview 

SciTegic (now 
Accelrys) 
Commercial 

Data analysis and mining Data analysis and workflow management based upon 
graphical programming (visual scripting): components are visually arranged to 
protocols. Configurable components for chemistry, statistics, sequencing, text mining. 

http://www.scitegic.com 

Spotfire 
Commercial 

Visual data mining, Visual and explorative data mining of large datasets. 
Guided analytics (guides predefined analysis workflows). 
Integrates computational services for R-project and S-PLUS1 and connects SAS files. 

http://www.spotfire.com 

Batelle Visua 
Commercial 

Visual data mining 
Mining in multidimensional space with very large sets of numerical, categorical, 
chemical and textual data. 
Feature extraction (relativity tool), dimensionality reduction for visualization, 
intuitive user interface. 

http://www.omniviz.com 

Insightful 
Commercial 

Statistical computing and graphics 
Extended features for robust and nonparametric regression, multivariate analyses, 
graphics, etc. 
Handles very large datasets. 

http://www.insightful.com 

Umetrics 
Commercial 

Statistical computing and design of experiments 
products focus on multivariate analyses. Interactive and versions for batch modeling 
and analysis. 

http://www.umetrics.com 

MathWorks 
Commercial 

Matlab1 and Simulink1 High-level language and environment for algorithm 
development, visualization, analysis and numeric computation. 
Runs on various platforms. 

http://www.mathworks.com 

Partek 
Commercial 

Data mining, machine learning 
Various distance and similarity metrices, PCA (principle component analysis), 
clustering, NLM (Pattern recognition, classification and prediction capabilities with 
artificial neural networks and genetic algorithms 

http://www.partek.com 

Cluster and 
TreeView 
open source 

for hierarchical clustering and viewing dendrograms 
software also creates self organizing maps and performs principal-components 
analysis. 

http://rana.lbl.gov/EisenSoftware
.htm 

GeneCluster 2.0 
open source 

used for constructing self-organizing maps 
 nearest neighbours and performs other supervised methods 

http://www-genome.wi.mit.edu/
cancer/software/genecluster2/gc
2.html 

RELNET 
open source 

relevance networks 
written in Java 

http://www.chip.org/relnet 

CellHTS2 
open source 

implemented in Bioconductor/R to analyze cell-based high-throughput RNAi 
screens.  
analysis and integration of multi-channel screens and multiple screens. 

http://www.dkfz.de/signaling/c
ellHTS/  

Weka 
open source 

collection of all pattern recognition algorithms 
tools for data pre-processing 
classification, regression, clustering, association rules, and visualization 

http://www.cs.waikato.ac.nz/ml
/weka/ 

R-project 
open source 

Based upon S-language (Bell Laboratories). 
Used in statistical method-profiling and applications for generalized linear modeling, 
(nonparametric tests, nonlinear regression, classification, clustering, etc.) 
Open Source and arbitrarily customizable. 

http://www.r-project.org 

ScreenSifter 
open source 

hit list and the visualization of biological modules among the hits 
Gene Ontology and protein-protein interaction analyses.  
visualization of screen-to-screen comparisons 

http://www.screensifter.com 
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Multidimensional scaling 
Multidimensional scaling (MDS)4 or artificial 

neural network (ANN) methods are traditional 
approaches for dimension reduction. MDS is a 
non-linear mapping approach. It is not so much an 
exact procedure as rather a way to “rearrange” objects 
in an efficient manner, and thus to arrive at a 
configuration that best approximates the observed 
distances. It actually moves objects around in the 
space defined by the specified number of dimensions 
and, then checks how well the distances between 
objects can be reproduced by the new configuration. 
In other words, MDS uses a minimization algorithm 
that evaluates different configurations with the goal 
of maximizing the goodness-of-fit (or minimizing 
“lack of fit”)5. 

Self-organising map (SOM) 
A SOM is basically a multidimensional scaling 

method, which projects data from input space to a 
lower dimensional output space. Self-organizing map 
(SOM) is one of the ANN methods. Effectively, it is a 
vector quantization algorithm that creates reference 
vectors in a high-dimensional input space (one 
dimension – one image descriptor) and uses them, in 
an ordered fashion, to approximate the input patterns 
in image space. It does this by defining local order 
relationships between the reference vectors so that 
they are made to depend on each other as though 
their neighboring values would lie along a 
hypothetical “elastic surface” 6, 7, 8. The SOM is 
therefore able to approximate the point density 
function, p (x), of a complex high-dimensional 
(multiparamteric, image descriptors) input space, 
down to a two dimensional space, by preserving the 
local features of the input data. SOM belongs to 
classifiers and will be also describe later.  

Supervised or Unsupervised 

Current classification methodologies are based 
upon pattern recognition algorithms to analyse 
multiparametric image descriptors delivered from 
image processing (n ⋅ m dimensional matrix). It can be 
divided into two categories: supervised approaches, 
or analysis to determine genes that fit a 
predetermined pattern; and unsupervised 
approaches, or analysis to characterize the 
components of a data set without the a priori input or 
knowledge of a training signal. Many of these 
algorithms are also offered as part of various software 
free available solutions and software development 
kits (SDK) (Table 1). 

Dissimilarity measure 
As first step in classification is to make a 

distinction between dissimilarity measures (also 
known as ‘metrics’) used not for clustering but also 
used in classification algorithms (Table 2). A 
dissimilarity measure indicates the degree of 
similarity between two siRNAs in screening data set. 
A clustering method builds on these dissimilarity 
measures to create groups of features with similar 
patterns. A commonly used dissimilarity measure is 
Euclidean distance, for which each gene is treated as a 
point in multidimensional space, each axis is a 
separate image parameter and the coordinate on each 
axis is the value of that parameter. One disadvantage 
of Euclidean distance is that if measurements are not 
normalized, correlation of measurements can be 
missed, the focus being instead on the overall amount 
of image descriptors. A second disadvantage is that 
siRNAs that are negatively associated with each other 
will be missed. Another dissimilarity measure that is 
commonly used is the Pearson Correlation 
Coefficient, which is measured between two siRNAs 
that are treated as vectors of measurements. Once a 
dissimilarity measure has been chosen, the 
appropriate classification technique can be applied. 
Next sections describe the four commonly used 
classification techniques: unsupervised techniques — 
hierarchical clustering, self-organizing maps, 
relevance networks and principal-components 
analysis — and two commonly used supervised 
techniques — nearest neighbours and support vector 
machines. 

 

Table 2. Dissimilarity measures 

Dissimilarity measures 
In any clustering algorithm, the calculation of a ‘distance’ between 
any two objects is fundamental to placing them into groups. 
Analysis of HCS data is no different in that finding clusters of 
similar siRNAs relies on finding and grouping those that are ‘close’ 
to each other. To do this, we rely on defining a distance between 
each image descriptor vector. There are various methods for 
measuring distance; these typically fall into two general classes: 
metric and semi-metric. 
Metric distances 
Intensive used is a Euclidean distance and less intensive used 
metrtics: Pearson correlation coefficient, Uncentered Pearson 
correlation coefficient, Squared Pearson correlation coefficient, 
Averaged dot product, Cosine correlation coefficient, Covariance, 
Manhattan distance, Mutual information, Spearman Rank-Order 
correlation, Kendall’s Tau 
Semi-metric distances 
Distance measures that obey the first three consistency rules, but 
fail to maintain the triangle rule are referred to as semi-metric. 
There are a large number of semi-metric distance metrics and these 
are often used in HCS data analysis. 
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Supervised methods 
Supervised methods represent a powerful 

alternative that can be applied if one has some 
previous information (training set) about which 
siRNA are expected to cluster together. Supervised 
methods are generally used for two purposes: finding 
siRNAs candidates with image descriptors that are 
significantly different between groups of known 
siRNA (controls), and finding siRNAs that accurately 
predict a characteristic of the control. There are 
several published supervised methods that find 
siRNAs or sets of siRNAs that accurately predict 
image descriptor characteristics, such as 
distinguishing one type of cancer from another, or a 
metastatic tumour from a non-metastatic one. These 
methods might find individual siRNAs, such as the 
nearest neighbour approach, and/or multiple genes, 
such as decision trees, neural networks and support 
vector machines. This article will focus on the two 
more popular supervised techniques: nearest- 
neighbour analysis and support vector machines. 

Nearest neighbours 
Although the nearest-neighbour technique can 

be used in an unsupervised manner, it is commonly 
used in a supervised fashion to find siRNAs directly 
with patterns that best match a designated query 
pattern (control). Given an input vector of image 
descriptors, nearest neighbor method extracts k closest 
image descriptor vectors in the reference set based on 
a similarity measure, and makes decision for the label 
of input vector using the labels of the k nearest 
neighbors (FIG. 2). Any metric can be used as the 
disimilarity measure. For example, an ideal siRNA 
pattern might be one that gives high number of cells 
as one parameter and low value of mean of intensity 
in second descriptor. Although this technique results 
in siRNAs that might individually split two sets of 
screening run, it does not necessarily find the smallest 
set of genes that most accurately splits the two sets. In 
other words, a combination of parameters of two 
siRNAs might split two conditions perfectly, but these 
two siRNAs might not necessarily be the top two hits 
that are most similar to the idealized pattern.  

Support vector machines 
Support vector machines address the problem of 

finding combinations of siRNAs that better split sets 
of biological samples (wells in plate with siRNA). 
Although it is easy to find individual siRNAs that 
split two sets with reasonable accuracy owing to the 
large number of siRNAs (also known as features) 
measured on automated microscope, occasionally it is 
impossible to split sets perfectly using individual 

siRNAs. The support vector machines technique 
actually further expands the number of features 
available by combining siRNAs using mathematical 
operations (called kernel functions). For example, in 
addition to using the image descriptors of two 
individual siRNAs A and B to separate two sets of 
screening run, the combination features A *B, A/B, (A 
* B)2 and others, can also be generated and used. To 
make this clear, it is possible that even if siRNA A and 
B individually could not be used to separate the two 
sets of screening run, together with the proper kernel 
function, they might successfully separate the two. 
This can be visualized graphically as well, as shown in 
FIG. 3. Consider each plate well with one siRNA as a 
point in multidimensional space, in which each 
dimension is a one image descriptor and the 
coordinate of each point is the image descriptors 
value of that siRNA in the plate. Using support vector 
machines, this high-dimensional space gains even 
more dimensions, representing the mathematical 
combinations of siRNA. The goal for support vector 
machines is to find a plane in this high-dimensional 
space that perfectly splits two or more siRNA sets of 
screening run. Using this technique, the resulting 
plane has the largest possible margin from samples in 
the two conditions, therefore avoiding data 
over-fitting. It is clear that within this 
high-dimensional space, it is easier to separate 
siRNAs from two or more conditions 
(negative/positive/others), but one problem is that 
the separating plane is defined as a function using all 
the dimensions available.  

 

 
Figure 2. Nearest-neighbour. The nearest-neighbour supervised method 
first involves the construction of hypothetical siRNAs that best fit the 
desired patterns. The technique then finds individual siRNAs that are most 
similar to the hypothetical genes. 
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Figure 3. Support Vector Machine. Instead of restricting to individual genes, support vector machines efficiently try several mathematical combinations of 
image descriptors to find the line (or plane) that best separates groups of siRNAs from screening run. SVMs use a training set in which genes known 
(controls) to be related by, for example function, are provided as positive examples and genes known not to be members of that class are negative 
examples. SVM solves the problem by mapping the image descriptor vectors from feature space into a higher-dimensional ‘feature space’, in which distance 
is measured using a mathematical function known as a Kernel Function, and the data can then be separated into two classes. 

 

Unsupervised methods 
Users of unsupervised methods try to find 

internal structure or relationships in a data set instead 
of trying to determine how best to predict a ‘correct 
answer’. Within unsupervised learning, there are 
three classes of technique: feature determination, or 
determining siRNAs with interesting properties 
without specifically looking for a particular a priori 
pattern, such as principal-components analysis, 
cluster determination, or determining groups of genes 
or samples with similar patterns of image descriptors, 
such as self-organizing maps, k-means clustering and 
one- and two-dimensional hierarchical clustering and 
network determination, or determining graphs 
representing siRNA–siRNA or siRNA–phenotype 
interactions using Boolean networks 9, 10, 11, 12, 13, 14, This 
article will focus on the four most common 

unsupervised techniques of principal-components 
analysis, hierarchical clustering, self-organizing maps 
and relevance networks. 

Hierarchical clustering 
Hierarchical clustering is a commonly used 

unsupervised technique that builds clusters of 
siRNAs with similar patterns based on image 
descriptors. This is done by iteratively grouping 
together siRNAs that are highly correlated in terms of 
their image measurements, then continuing the 
process on the groups themselves. Dendograms (FIG. 
4) are used to visualize the resultant hierarchical 
clustering. A dendrogram represents all genes as 
leaves of a large, branching tree. Each branch of the 
tree links two genes, two branches or one of each. 
Although construction of the tree is initiated by 
connecting genes that are most similar to each other, 
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genes added later are connected to the branches that 
they most resemble. Although each branch links two 
elements, the overall shape of the tree can sometimes 
be asymmetric. In visually interpreting dendrograms, 
it is important to pay attention to the length of the 
branches. Branches connecting genes or other 
branches that are similar are drawn with shorter 
branch lengths. Longer branches represent increasing 
dissimilarity. Hierarchical clustering is particularly 
advantageous in visualizing overall similarities in 
image descriptor patterns observed in an experiment, 
and because of this, the technique has been used in 
many publications 15. The number and size of image 
descriptors patterns within a data set can be estimated 
quickly, although the division of the tree into actual 
clusters is often performed visually. It is important to 
note the few disadvantages in their use. First, 
hierarchical clustering ignores negative associations, 
even when the underlying dissimilarity measure 
supports them. Negative correlations might be crucial 
in a particular experiment, as described above, and 
might be missed. Furthermore, hierarchical clustering 
does not result in clusters that are globally optimal, in 
that early incorrect choices in linking genes with a 
branch are not later reversible as the rest of the tree is 
constructed. So, this method falls into a category 
known as ‘greedy algorithms’, which provide good 
answers, but for which finding the most globally 
optimal set of clusters is computationally intractable. 

Despite these disadvantages, hierarchical clustering is 
a popular technique in surveying image descriptor 
patterns in an experiment. 

Self-organizing maps 
Self-organizing maps are similar to hierarchical 

clustering, in that they also provide a survey of image 
descriptors patterns within a data set, but the 
approach is quite different. Genes are first 
represented as points in multidimensional space. In 
other words, each biological sample (siRNA in well) is 
considered a separate dimension or axis of this space, 
and after the axes are defined, siRNAs are plotted 
using parameters (image descriptors) as coordinates. 
This is easiest to visualize with three or less siRNAs, 
but extends to a larger number of 
experiments/dimensions. Nearness can be defined 
using any of the dissimilarity measures described 
above, although Euclidean distance is most 
commonly used. The process starts with the answer, 
in that the number of clusters is actually set as an 
input parameter. A map is set with the centres of each 
cluster-to-be (known as centroids) arranged in an 
initial arbitrary configuration, such as a grid. As the 
method iterates, the centroids move towards 
randomly chosen genes at a decreasing rate. The 
method continues until there is no further significant 
movement of these centroids. The advantages of 
self-organizing maps include easy two-dimensional 
visualization of image patterns and reduced 

computational requirements 
compared with methods that 
require comprehensive 
pairwise comparisons, such 
as dendrograms. However, 
there are several 
disadvantages. First, the 
initial topology of a 
self-organizing map is 
arbitrary and the movement 
of the centroids is random, so 
the final configuration of 
centroids might not be 
reproducible. Second, similar 
to dendrograms, negative 
associations are not easily 
found. Third, even after the 
centroids reach the centres of 
each cluster, further 
techniques are needed to 
delineate the boundaries of 
each cluster. Finally, genes 
can belong to only a single 
cluster at a time. 

 
Figure 4. Hierarchical clustering. Genes in the demonstration data set were subjected to average-linkage 
hierarchical clustering using a Euclidean distance metric and image descriptors families that were colour 
coded for comparison. Similar genes appear near each other. This method of clustering groups genes by 
reordering the descriptors matrix allows patterns to be easily visualized. The length of the branch is inversely 
proportional to the degree of similarity. Shades of red indicate increased relative image descriptor; shades of 
green indicate decreased relative image descriptor. 
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Relevance networks 
Continuing through the set of unsupervised 

techniques, relevance networks allow networks of 
features to be built, whether they represent siRNA, 
phenotypic or clinical measurements. The technique 
works by first comparing all image descriptors with 
each other in a pairwise manner, similar to the initial 
steps of hierarchical clustering. Typically, two siRNA 
are compared with each other by plotting all the 
samples on a scatterplot, using image descriptors 
values of the two siRNAs as coordinates. A 
correlation coefficient is then calculated, although any 
dissimilarity measure can be used. A threshold value 
is then chosen, and only those pairs of features with a 
measure greater than the threshold are kept. These are 
displayed in a graph similar to FIG. 5, in which 
siRNAs and phenotypic measurements are nodes, and 
associations are edges between nodes. Although the 
threshold is chosen using permutation analysis, it can 
actually be used as a dial, increasing and decreasing 
the number of connections shown. There are several 
advantages in using relevance networks. First, they 
allow features of more than one data type to be 
represented together; for example, if strong enough, a 
link between two image descriptors (number of cells 
and mean if intensity) of a particular siRNA could be 
visualized. Second, features can have a variable 
number of associations; theoretically, a transcription 
factor might be associated with more siRNAs than a 
downstream component. Finally, negative 
associations can be visualized as well as positive ones. 
One disadvantage to this method is the degree of 
complexity seen at lower thresholds, at which many 
links are found associating many siRNAS in a single 
network. Completely connected subcomponents of 
these complex graphs (known as ‘cliques’) are not 
easy to find computationally. 

Principal-components analysis 
PCA is used to transform a number of 

potentially correlated image descriptors into a 
number of relatively independent variables that then 
can be ranked based upon their contributions for 
explaining the whole data set. The transformed 
variables that can explain most of the information in 
the data, are called principal components. The 
components having minor contribution to the data set 
may be discarded without losing too much 
information. These dimension reduction approaches 
do not always work well. In order to validate the 
dimension reduction results, we need a technology to 
map a graphed point to its structure drawing. 

 
Figure 5. Relevance networks. Relevance networks find and display pairs 
of siRNAs with strong positive and negative correlations, then construct 
networks from these siRNA pairs; typically, the strength of correlation is 
proportional to the thickness of the lines between siRNA, and red 
indicates a negative correlation. 

 
Principal-components analysis is more useful as 

a visualization technique. It can be applied to either 
siRNA or image descirptors, which are represented as 
points in multidimensional space, similar to 
self-organizing maps FIG 6a and FIG 6b. Principal 
components are a set of vectors in this space that 
decreasingly capture the variation seen in the points. 
The first principal component captures more variation 
than the second, and so on. The first two or three 
principal components are used to visualize the siRNA 
on screen or on a page, as shown in FIG. 6. Because 
each principal component exists in the same 
multidimensional space, they are linear combinations 
of the siRNAs. For example, the greatest variation of 
biological samples might be described as 3 times the 
particular image descriptor of the first siRNA, plus 
–2.1 times same descriptor of the second gene, and so 
on. The principal components are linear combinations 
that include every siRNA or image descriptor, and the 
biological significance of these combinations is not 
directly intuitive. There are other caveats in using 
principal components. For example, if screening runs 
are performed on samples from two conditions, 
principal components will best describe the variation 
of those samples, but will not always be the best way 
to split samples from those two conditions. 
Additionally PCA is a powerful technique for the 
analysis of screening data when used in combination 
with another classification technique, such as 
k-means, hierarchical clustering, or self organizing 
maps (SOMs) that requires the user to specify the 
number of clusters.  
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Figure 6. Principal Component Analysis. Principal-components analysis is typically used as a visualization technique, showing the clustering or scatter of 
siRNAs (or samples) when viewed along two or three principal components. In the figure c), a principal component can be thought of as a ‘meta-biological 
sample’, which combines all the biological samples so as to capture the most variation in image descriptors. Correlated parameters are close together, while 
anticorrelated parameters are in the other side of the origin. Principal components are showing the close correlation between the Mean Area and Mean of 
Intensity measurements. 

 

Missing Values 
Due to various effects during automated 

transfection, staining, and data analysis, not each 
siRNA can be assigned a meaningful ratio. HCS 
experiments often generate expression data arrays 
with some missing values. This results in missing 
values in the data matrix. To calculate distances, only 
elements represented in both vectors are used. If there 
is a missing value in one or both vectors, this 
dimension is not included in the distance calculation. 
This can lead to various problems: 

The greatest problems occur, if the distance is 
not independent of the number of vector elements n, 
as it is the case for Euclidian distance (Table 2) for 
instance. Vectors with missing values are then 
differently weighted in comparison with vectors with 
no missing values. Let’s say there are 3 siRNA: 

1. A siRNA-vector with all values valid 
2. A siRNA -vector with all values present but 

not equal to 1. 
3. A siRNA -vector with only one value equal to 

the corresponding value of siRNA 1 
If vector 1 & 2 and 1 & 3 are compared, the 

following results are obtained: 
• 1 & 2: They are not similar so the distance is 

greater than 0 
• 1 & 3: Only values, which are present in both 

vectors, are used for the distance calculation, so 
the siRNAs are treated similarly, because the 
only comparison results in distance 0. But vector 
1 and 3 could also be completely different... 
For that reasons, missing values are difficult to 

handle. A few are usually no problem, but if there are 

too many in comparison to the number of 
vector-elements n, an arbitrary result can be expected. 
Missing data is one of the problems that 
preprocessing techniques need to deal with when 
analyzing HCS data. Many techniques, such as 
hierarchical and K-means clustering, are ill suited to 
analyze such problem spaces, as they require a 
complete data matrix to do the analysis. It is 
important to recognize the fact that such methods 
require a complementary preprocessing algorithm to 
fill in an estimate for the missing data. Various 
interpolation algorithms can be used for this purpose 
with varying degrees of success. These techniques can 
range from simple steps, such as filling the spot of the 
missing data with a zero (which is only partially 
effective for a very narrow range of classification 
algorithms) or row (gene) averaging, to using 
sophisticated interpolation techniques to fill in the 
missing data spots. 

Conclusion 
The ‘list of genes’ resulting from a HCS should 

not be viewed as an end in itself; its real value 
increases only as that list moves through biological 
validation, ranging from the numerical verification of 
results with alternative techniques, to ascertaining the 
meaning of the results, such as finding common 
promoter regions or biological relationships between 
the genes. There are a number of pattern recognition 
techniques to analyze HCS data. The simplest 
category of these techniques is based on individual 
gene analysis. Examples of these techniques are fold 
approach, t-test rule, and Bayesian framework. More 
sophisticated techniques include classification and 
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clustering analysis methods described in this paper. 
The hypothesis behind using clustering methods is 
that “genes in a cluster must share some common 
function or regulatory elements. However, 
classifications based on clustering algorithms are 
dependent on the particular methods used, the 
manner in which the data are normalized within and 
across experiments, and the manner in which we 
measure the similarity. Although different techniques 

might be more or less appropriate for different data 
sets, there is no such thing as a single correct 
classification. Finally, the use of HCS in basic and 
applied research in drug discovery is only going to 
increase, but as these data sets grow in size, it is 
important to recognize that untapped information 
and potential discoveries might still be present in 
existing data sets (Table 3). 

 

Table 3. Downloadable large data sets of RNAi screening. 
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